Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 15(3): 722-730, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26599327

RESUMO

A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease.


Assuntos
Polpa Dentária/metabolismo , Doenças do Sistema Nervoso/genética , Neurônios/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Humanos , Células-Tronco
2.
Biol Open ; 4(7): 776-82, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25948754

RESUMO

Changes in UBE3A expression levels in neurons can cause neurogenetic disorders ranging from Angelman syndrome (AS) (decreased levels) to autism (increased levels). Here we investigated the effects on neuronal function of varying UBE3A levels using the Drosophila neuromuscular junction as a model for both of these neurogenetic disorders. Stimulations that evoked excitatory junction potentials (EJPs) at 1 Hz intermittently failed to evoke EJPs at 15 Hz in a significantly higher proportion of Dube3a over-expressors using the pan neuronal GAL4 driver C155-GAL4 (C155-GAL4>UAS-Dube3a) relative to controls (C155>+ alone). However, in the Dube3a over-expressing larval neurons with no failures, there was no difference in EJP amplitude at the beginning of the train, or the rate of decrease in EJP amplitude over the course of the train compared to controls. In the absence of tetrodotoxin (TTX), spontaneous EJPs were observed in significantly more C155-GAL4>UAS-Dube3a larva compared to controls. In the presence of TTX, spontaneous and evoked EJPs were completely blocked and mEJP amplitude and frequency did not differ among genotypes. These data suggest that over-expression of wild type Dube3a, but not a ubiquitination defective Dube3a-C/A protein, compromises the ability of motor neuron axons to support closely spaced trains of action potentials, while at the same time increasing excitability. EJPs evoked at 15 Hz in the absence of Dube3a (Dube3a(15b) homozygous mutant larvae) decayed more rapidly over the course of 30 stimulations compared to w(1118) controls, and Dube3a(15b) larval muscles had significantly more negative resting membrane potentials (RMP). However, these results could not be recapitulated using RNAi knockdown of Dube3a in muscle or neurons alone, suggesting more global developmental defects contribute to this phenotype. These data suggest that reduced UBE3A expression levels may cause global changes that affect RMP and neurotransmitter release from motorneurons at the neuromuscular junction. Similar affects of under- and over-expression of UBE3A on membrane potential and synaptic transmission may underlie the synaptic plasticity defects observed in both AS and autism.

3.
J Neurophysiol ; 109(4): 1017-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175803

RESUMO

Biophysical characteristics of tetrodotoxin-sensitive sodium (Na(+)) currents were studied in vasopressin (VP) and oxytocin (OT) supraoptic neurons acutely isolated from rat hypothalamus. Na(+) current density (pA/pF) was significantly greater in VP neurons than in OT neurons. No significant difference between VP and OT neurons was detected regarding the voltage dependence of activation and steady-state inactivation, or rate of recovery from inactivation of Na(+) currents. In both VP and OT neurons, the macroscopic inactivation of the Na(+) currents was best fitted with a double-exponential expression suggesting two rates of inactivation. Also in both types, the time course of recovery from inactivation proceeded with fast and slow time constants averaging around 8 and 350 ms, respectively, suggesting the presence of multiple pathways of recovery from inactivation. The slower time constant of recovery of inactivation may be involved in the decrease in action potential (AP) amplitude that occurs after the first spike during burst firing in both neuronal types. The larger amplitude of Na(+) currents in VP vs. OT neurons may explain the previous observations that VP neurons exhibit a lower AP threshold and greater AP amplitude than OT neurons, and may serve to differently tune the firing properties and responses to neuromodulators of the respective neuronal types.


Assuntos
Potenciais de Ação , Hipotálamo Anterior/fisiologia , Neurônios/fisiologia , Ocitocina/metabolismo , Sódio/metabolismo , Vasopressinas/metabolismo , Animais , Feminino , Hipotálamo Anterior/citologia , Cinética , Neurônios/classificação , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
4.
Biophys J ; 98(2): 197-206, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20338841

RESUMO

L-cysteine (L-cys) increases the amplitude of T-type Ca(2+) currents in rat T-rich nociceptor-like dorsal root ganglia neurons. The modulation of T-type Ca(2+) channel gating by L-cys was studied by fitting Markov state models to whole-cell currents recorded from T-rich neurons. The best fitting model tested included three resting states and inactivation from the second resting state and the open state. Inactivation and the final opening step were voltage-independent, whereas transitions between the resting states and deactivation were voltage-dependent. The transition rates between the first two resting states were an order of magnitude faster than those between the second and third resting states, and the voltage-dependency of forward transitions through resting states was two to three times greater than for analogous backward transitions. Analysis with the best fitting model suggested that L-cys increases current amplitude mainly by increasing the transition rate from resting to open and decreasing the transition rate from open to inactivated. An additional model was developed that could account for the bi-exponential time course of recovery from inactivation of the currents and the high frequency of blank sweeps in single channel recordings. This model detected basically the same effects of L-cys on channel gating as the best fitting model.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cisteína/metabolismo , Gânglios Espinais/fisiologia , Modelos Neurológicos , Nociceptores/fisiologia , Animais , Simulação por Computador , Cinética , Cadeias de Markov , Potenciais da Membrana/fisiologia , Ratos
6.
Neurosci Lett ; 408(2): 129-34, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-16978779

RESUMO

Carbamazepine was tested on high-threshold TTX-resistant Na+ currents (TTX-R-currents), evoked from acutely isolated rat dorsal root ganglion (DRG) cells. Under control conditions, the TTX-R-currents recorded from different DRG cells varied greatly regarding use-dependent inactivation (TTX-R-current UDI), measured as the percent decrease in current amplitude induced by changing the current activation rate from 0.1 Hz to 1.0 Hz. Also, when TTX-R-currents were evoked at 0.1 Hz from a holding potential (hp) of -60 mV, a larger fraction of TTX-R-channels resided tonically in a slow inactivation state in DRG cells with more TTX-R-current UDI versus those with less TTX-R-current UDI. The block of TTX-R-currents evoked from hp -60 mV by 100-microM carbamazepine and the EC50 for carbamazepine block was positively correlated with TTX-R-current UDI. The slope factors estimated for the concentration-response curves averaged 0.68, suggesting the presence of low and high affinity sites. Fitting the data with a two-site binding isotherm gave estimates of 30 microM and 760 microM for the EC50s of the high and low affinity sites, respectively. The fraction of the total fit attributed to the high affinity site was positively correlated with TTX-R-current UDI. Carbamazepine increased the fast and slow time constants for recovery from inactivation and the fraction of the fit attributed to the slow time constant. These data suggest that carbamazepine interacts with a slow inactivation state of TTX-R-channels. This particular mechanism might be exploited in future research aimed at developing pain medications that selectively block Na(V)1.8 channels or Na+ channels in general.


Assuntos
Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Canais de Sódio/metabolismo , Animais , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Masculino , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Tetrodotoxina/metabolismo
7.
Biophys J ; 83(1): 5-21, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12080097

RESUMO

We previously demonstrated that activation of a 5HT(4) receptor coupled cAMP-dependent signaling pathway increases tetrodotoxin-resistant Na(+) current (I(Na)) in a nociceptor-like subpopulation of rat dorsal root ganglion cells (type 2). In the present study we used electrophysiology experiments and computer modeling studies to explore the mechanism(s) underlying the increase of I(Na) by 5HT. In electrophysiological experiments with type 2 dorsal root ganglion cells, 5HT increased peak I(Na) and the activation and inactivation rate, without significantly affecting the voltage dependency of activation or availability. Studies on the voltage dependency of channel availability, time course of removal of inactivation, and inactivation of evoked Na(+) currents suggested that there are at least two inactivation states of the Na(+) channel, one (I(fast)) that is induced and retrieved faster than the other (I(slow)). Long (1 s), but not short (60 or 100 ms), inactivating conditioning pulses (CPs) suppressed the 5HT-induced increase in I(Na). Computer modeling studies suggest that 5HT increased I(Na) mainly by decreasing the transition rate (k(OI1)) from an open state to I(fast). Furthermore, 5HT increased I(Na) activation and inactivation rates mainly by increasing the transition rate from closed to open (k(C3O)) and from I(fast) to I(slow) (k(I1I2)), respectively. The antagonism of the 5HT-induced increase in I(Na) by 1-s inactivation CPs may be due an enhancement of transitions from I(fast) to I(slow), via the increase in k(I1I2). This may deplete the pool of channels residing in I(fast), reducing the frequency of reopenings from I(fast), which offsets the increase in I(Na) produced by the reduction in k(OI1). The above findings fit well with previous studies showing that activation of the cAMP/PKA cascade simultaneously increases voltage sensitive tetrodotoxin-resistant Na(+) conductance and inactivation rate in nociceptors. The antagonism of the effects of 5HT by long inactivation CPs suggests that drugs designed to induce and/or stabilize the I(slow) state might be useful for reducing hyperalgesia produced by inflammatory mediators.


Assuntos
Nociceptores/metabolismo , Serotonina/farmacologia , Canais de Sódio/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Inflamação , Cinética , Modelos Químicos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sódio/farmacologia , Software , Temperatura , Tetrodotoxina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...